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Gravitational Waves Ushered in New Era of Astrophysics

® Discovery of GW from a binary black-hole ®Since GW 150914 was observed, many more black

merger by LIGO hole binaries (BHB) and two binary neutron
Hanford Livingston stars (BNS) discovered by LIGO/Virgo.
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Gravitational-Wave Landscape until ~2030
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*From several tens to hundreds of binary detections

per year.

*Inference of astrophysical properties of BHBs,

1000

NSBHs and BNSs in local Universe.

(Aasi et al. Living Rev. Rel. 21, 2020)
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(Aasi et al. Living Rev. Rel. 21, 2020)
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Gravitational-Wave Landscape after ~2030 on the Ground

(3G Science-Case Report,in prep 20
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of matter in unexplored regimes of

density and temperatures with ET/CE

and EM facilities. *Merger and ringdown of Intermediate

Black Holes (IMBHs) | eIntermediate Mass-Ratio Inspirals

®
48
< k gl | 1 I 3 A
g ||z vemoveneem 24~ —- mom3Hz | (IMRIs), with mass ratio 10°____ Q
E = ° ) e o
2 20001 § ~ \ From 5 Hz l’/é/"\\}“\ Q-
§ N+ O 0 9% C? 11 . IP!(%M‘ \‘ o
§ Uary, %, = \ = Lrom 7 Hz W= —\V <
E 400 + 6%,2 E 0 _ I 7 S
O 500 Mesons % S \ L (DD'
= neutron +~ 1
"é - mg:g;rs %o« %% dense quark matter N 1 . I (100 _|_ 100)M® %
g 200 R N
o 2 . Tt \ “ @
2 ® %; .. — 91 ‘J < = 1 O i =
IG_J 100 + _ color c
1 . ~neutron-rich matter superconductor T T T T T
T neutron-rich nuclei cold neutron stars _02 OO 02 04 06
Q } i I i Q } > .
102 qo1  10% 101 1020 Time/s at GW frequency ~1Hz at GW frequency ~10 Hz

Density ( g/cm?) (3G Science-Case Report, in prep 20)



Outstanding Questions in Physics and Astrophysics

* What are the properties of dynamical spacetime (gravitational waves)?

* |s General Relativity still valid in the highly dynamical, strong-field regime?

* Are Nature’s black holes the black holes predicted in the General theory
of Relativity!?

*How black holes and neutron stars form, which is their astrophysical
environment, and how do they form binaries!?

* How matter behaves under extreme density and pressure?! Can dark
matter make compact objects!?

* What’s the origin of the most energetic phenomena in our Universe!

e Can we discover new fundamental particles (axions, ultra-light bosons)?

PIM Hg
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* Can we infer the cosmological model of our Universe through
gravitational-wave observations!
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Solving Two-Body Problem in General Relativity

1 e . bound orbits: vZ/c2 ~ GM/rc?

*GR is non-linear theory. R, — igWR =

*Einstein’s field equations can be solved:

Post-Newtonian t

-approximately, but analytically (fast way)
-"“exactly”, but numerically on supercomputers (slow way) Effective one-bod

*Synergy between analytical and numerical relativity is crucial
to provide GW detectors with templates to use for searches
and inference analyses.

*Post-Newtonian (PN) (large *Post-Minkowskian (PM) (large eSmall mass-ratio (gravitational self-
separation, and slow motion, separation, unbound motion, force, GSF, i.e., early to late inspiral)
bound motion, i.e., early inspiral) i.e., scattering) ) .

4 )

expansion in

expansion in (7 % expansion in mz/ml
vZ/c? ~ GM/rc? u W‘
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Highly Accurate Waveform Models for GW Observations

. 1 SS1(; . bound orbits: vZ/c2 ~ GM/rc?
*GR is non-linear theory. RW — §QWR = — TW e e e e el
- | r
*Einstein’s field equations can be solved: : Post-Newtonian t
-approximately, but analytically (fast way)
-"“exactly”’, but numerically on supercomputers (slow way) Effective one-bod

*Synergy between analytical and numerical relativity is crucial
to provide GW detectors with templates to use for searches
and inference analyses.

sEffective-one-body (EOB) | o .
(combines results from all methods, time — EOB theory inspiral { merger Ermgdown

. : — numerical simulation 5
i.e., entire coalescence)

*Key ideas of EOB theory inspired /\/\/\

by quantum field theory.

GW

calibration of EOB theory to numerical simulations
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Scattering Amplitude: A New Way to Study Gravity

*Relativistic 2-body dynamics eClassical scattering: scattering angle ¥ ®Quantum scattering amplitude

/

N/

(credit: Carvalho)
(credit: Steinhoff)

e.g., in Born approximation: Fourier transform
of potential is related to scattering amplitude

* Advantages of scattering amplitudes: on-shell, inherently gauge invariant, observables.

* Advanced integration methods developed in QCD collider physics applied to classical gravity.

*Generalized unitarity methods: use tree amplitudes to build higher-order (loop) amplitudes.
(Britto et al. 04, 05, Bern et al. 1994, 1995, Neil & Rothstein 13)

*Double copy and color-kinematic duality: gravitons are like two gluons.
(Bern et al. 10, Monteiro et al. |5, Bjerrum-Bohr et al. |15, Luna et al. 16, | 7, Goldberger & Ridgway 17)

*Bound-orbit observables from unbound-orbit observables through analytical continuation.
(Kdlin et al. 20)
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Some Results from Interplay with Scattering Amplitude Methods & EFT
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Small parameter is GM/re2<<1, v2/¢2 ~ 1, large separation, natural for unbound motion/scattering
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Some Results from Interplay with Scattering Amplitude Methods & EFT (contd.)

»2-body spin-orbit (SO) Hamiltonian at 4.5PN computed toward merger —p
using EFT or interplay between bound and unbound >~ 000
. . o6 0.00f— —
orbits, and gravitational self-force results. —> ¢ | —
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eResults can be easily included into EOB formalism. (Antonelli et al. 20)

(Damour 19, Antonelli et al. 19)
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Toward High-Precision Gravitational-Wave Astrophysics

*Observing gravitational waves and inferring astrophysical/physical information hinges on our ability to
make highly precise predictions of two-body dynamics and gravitational radiation.

*Crucial to improve waveform models for BBHs and binaries with matter for LIGO and Virgo upcoming runs
and for future detectors (Cosmic Explorer, Einstein Telescope & LISA). Waveform accuracy would need to be
improved by one or two orders of magnitude depending on the parameter space.

*Unique opportunity for theoretical particle physicists to contribute.

eConservative PN order 1.5 2.5 3.5 4.5 5.5 6.5

dynamics —> 0 1 2 3 4 5 6 need up to

no spin N 1PN 2PN 3PN 4PN 1PM | tree
n spin-orbit LO SO NLO SO | N2LO SO | N3LO SO 2PM / 1-loop
§ spin2 LO S2 NLO S2 | N2LO S2 3PM / 2-loop
\qs, spin?3 LO S3 NLO S3 4PM / 3-loop
spin*4 LO S4 5PM / 4-loop

T inA N.B. Resummation methods -

*Plus radiation! i can accelerate accuracy. i FHOOR
spin?6 LO S6 7PM / 6-loop
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